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Abstract

This paper develops a finite element scheme to analyze vehicle–bridge dynamic responses due to vehicle braking and

acceleration. In this model, an assumption is that the averaged vehicle acceleration at current time is known; so absolute

vehicle displacements can be changed to relative vehicle displacements. Thus, the inertia force at the center of each vehicle

mass can be generated. This scheme produces a linear and small displacement analysis. In the meantime, the semi-

theoretical solution of a two-axle vehicle moving on a bridge was generated with the acceleration effect. Then, this scheme

was used to validate the proposed finite element model with almost identical agreement. The most attraction of this model

is that the theory and formulation are simple and can be added to standard dynamic finite element codes without difficulty.

r 2007 Published by Elsevier Ltd.
1. Introduction

Investigating bridge dynamic behaviors induced by moving vehicles has passed through more than 100
years. At present, researchers can perform complicated and actual vehicle–bridge analyses. The literature is
extensive for the bridge dynamic response due to moving vehicles with constant speed. However, not much
investigation was oriented toward the dynamic response of bridges passed by moving vehicles with non-
uniform speed (braking or acceleration). In early studies, Fryba [1,2] researched the foundation characteristics
of a beam due to a rolling mass under braking effect, and also studied the quasi-static distribution of braking
and starting forces in rails and bridge. Afterward, investigation on the dynamic response of highway bridges
under vehicle braking was reported by Kishan and Traill-Nash [3]. They indicated that vehicle braking may
contribute significantly to bridge response, and that the resulting impact factors may exceed those adopted in
current design practice. Gupta and Traill-Nash [4] investigated a dynamic behavior of single span bridge due
to vehicular load with road surface irregularities and braking of vehicle. Mulcahy [5] presented a method for
the calculation of dynamic response of single span bridges due to a three-axle tractor–trailer vehicle. The
method takes account of vehicle acceleration or braking and road roughness. Krylov [6] investigated the
ground vibration due to the vehicle with a constant acceleration from rest to a constant speed. Toth and Ruge
[7] analyzed the longitudinal behavior of long railway bridges due to moving train braking. Yang and Wu [8]
ee front matter r 2007 Published by Elsevier Ltd.
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developed suitable numerical models for handing both the vehicle and bridge responses; moreover, they
investigated the behavior of a bridge caused by a vehicle in deceleration. Berghuvud [9] performed the
modeling and simulation of the strongly nonlinear dynamic interaction between vehicle and track in braked
conditions. Hu and Han [10] presented a nonlinear dynamic model of 9 degrees of freedom for four-wheel-
steering vehicles. This model includes the pitch and roll of the vehicle body, the motion of 4 wheels in the
accelerating or braking process. Guner et al. [11] developed a dynamic model for dynamic and thermal
analysis of the braking phenomenon. Using this model, the equation of motion of a car has been derived for
straight line braking. Law and Zhu [12] studied the dynamic responses of a multi-span continuous bridge
under a moving vehicle by considering the effect of interaction between the road surface roughness and the
braking of vehicle.

This study developed a simple finite element model to simulate vehicle–bridge dynamic problems for the
braking and acceleration of moving vehicles. In the meantime, we proposed the semi-theoretical solution to
validate this finite element method. As we know, this type of validation is limited in the literature. The most
attraction of this model is that the theory and formulation are simple and can be added to dynamic finite
element codes without difficulty. Moreover, very complicated vehicles can be appropriately modeled using this
proposed method with the same approach of a standard finite element method.

2. Equations of a moving two-axle system

The main purpose of this section is to evaluate a semi-theoretical solution to validate the finite element
method mentioned in Section 4. Fryba [13] generated the formulations of a two-axle vehicle moving on a
simply supported beam loaded in the gravity direction (z direction). This study added the horizontal
(x direction) spring and damper into Fryba’s solution so that the braking and acceleration could be included.
In this paper, the x direction is the bridge longitudinal direction and the z direction is the gravity direction.
Since, we solved the current equations using numerical methods, the bridge is not necessary to be simply
supported. Fig. 1 shows a two-axle vehicle with 7 degrees of freedom including rigid mass rotation (f), rigid
mass, wheel 1 and wheel 2 displacements (v3, v1 and v2) in the z direction and those (u3, u1 and u2) in the x

direction. The bridge surface where vehicles move is assumed in the x direction with a length of L. In the
intervals 0pxpL, the moment equilibrium at the rigid body center is

�I €f�D1ðZ1 þ Zb1Þ þD2ðZ2 þ Zb2Þ � ðF 1 þ F2ÞHc ¼ 0, (1)

where

Z1 ¼ k1ðv3 �D1f� v1Þ, (2)

Z2 ¼ k2ðv3 �D2f� v2Þ, (3)

Zb1 ¼ c1ð_v3 �D1
_f� _v1Þ, (4)
k2
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Fig. 1. Two-axle vehicle model with vertical and horizontal spring–dampers.
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Zb2 ¼ c2ð_v3 �D2
_f� _v2Þ, (5)

�F1 ¼ ðu3 � fHc � u1Þkx1 þ ð _u3 �
_fHc � _u1Þcx1, (6)

�F2 ¼ ðu3 � fHc � u2Þkx2 þ ð _u3 �
_fHc � _u2Þcx2, (7)

where I is the mass of inertia of the rigid body, c1, c2, cx1 and cx2 are the dampers, k1, k2, kx1 and kx2 are the
springs and Hc, D1 and D2 are the distances as shown in Fig. 1.

The equations of horizontal and vertical equilibriums at the rigid body center are

�m3 €u3 þ F1 þ F 2 ¼ 0, (8)

�m3 €v3 � ðZ1 þ Zb1Þ � ðZ2 þ Zb2Þ ¼ 0, (9)

where m3 is the mass of the rigid body.
The equations of horizontal and vertical equilibriums at wheel i (i ¼ 1, 2) are

�mi €ui þ Fi þ Rix ¼ 0, (10)

Pi þ P3i �mi €vi þ Zi þ Zbi � Ri ¼ 0, (11)

Rix ¼ Kix½ui � �iuðxi; tÞ�, (12)

Ri ¼ Ki½vi � �ivðxi; tÞ � riðxiÞ�, (13)

where mi is the mass of wheel i, Pi ( ¼ mig, g ¼ gravity) is the weight of wheel i and P3i ( ¼ m3g(D�Di)/D) is
the load at wheel i from the weight of the rigid body, Rix and Ri are x and z moving forces by which the wheel i

acts on beam at point xi, Kix and Ki are the spring constants in x and z directions to simulate the elastic layer
of the beam surface, u(xi, t) and v(xi, t) are the x and z displacement of the beam at xi, ei is zero for wheel i

outside the beam domain and is one for wheel i inside the beam domain and ri(xi) is the road irregularity at xi

in the z direction.
The above equations can be re-arranged to be a matrix form as follows:

½M�

€f

€v3

€v1

€v2

€u3

€u1

€u2

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

þ ½C�

_f

_v3

_v1

_v2

_u3

_u1

_u2

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

þ ½K �

f

v3

v1

v2

u3

u1

u2

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼ fPF g, (14)

where

½M� ¼

I 0 0 0 0 0 0

0 m3 0 0 0 0 0

0 0 m1 0 0 0 0

0 0 0 m2 0 0 0

0 0 0 0 m3 0 0

0 0 0 0 0 m1 0

0 0 0 0 0 0 m2

2
666666666664

3
777777777775
,
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½C� ¼

D2
1c1 þD2

2c2 þH2
cðcx1 þ cx2Þ D1c1 �D2c2 �D1c1 D2c2 �Hcðcx1 þ cx2Þ Hccx1 Hccx2

D1c1 �D2c2 c1 þ c2 �c1 �c2 0 0 0

�D1c1 �c1 c1 0 0 0 0

D2c2 �c2 0 c2 0 0 0

�Hcðcx1 þ cx2Þ 0 0 0 cx1 þ cx2 �cx1 �cx2

Hccx1 0 0 0 �cx1 cx1 0

Hccx2 0 0 0 �cx2 0 cx2

2
666666666664

3
777777777775
,

½K � ¼

D2
1k1 þD2

2k2 þH2
cðkx1 þ kx2Þ D1k1 �D2k2 �D1k1 D2k2 �Hcðkx1 þ kx2Þ Hckx1 Hckx2

D1k1 �D2k2 k1 þ k2 �k1 �k2 0 0 0

�D1k1 �k1 k1 0 0 0 0

D2k2 �k2 0 k2 0 0 0

�Hcðkx1 þ kx2Þ 0 0 0 kx1 þ kx2 �kx1 �kx2

Hckx1 0 0 0 �kx1 kx1 0

Hckx2 0 0 0 �kx2 0 kx2

2
666666666664

3
777777777775

fPF g ¼

0

0

P1 þ P31 � R1

P2 þ P32 � R2

0

�R1x

�R2x

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

.

Eq. (14) can be used to calculate the dynamic response of the two-axle vehicle, in which only the
displacements (u(xi, t) and v(xi, t)) at wheels 1 and 2 of the force terms R1, R2, R1x and R2x are required from
the bridge. For the bridge structure, these forces are applied to the current locations of wheels 1 and 2 in x and
z directions. If these forces are known, the bridge structural analysis is a linear dynamic problem, which can be
accurately solved using a traditional Newmark finite element method. Since these forces and displacements u1,
u2, v1 and v2 are coupled together, we used following procedures to solve this bridge–vehicle problem.
(1)
 Find R1, R2, R1x and R2x using the displacements of the last time step.

(2)
 Solve Eq. (14) at the current time step using the Newmark method.

(3)
 Solve the bridge dynamic analysis using the Newmark finite element method.

(4)
 If Eps%0.0001, the solution is convergent, and go to Step (1) for the next time step.

Eps ¼
jnR1 � n�1R1j þ jnR2 � n�1R2j þ jnR1x � n�1R1xj þ jnR2x � n�1R2xj

jnR1j þ jnR2j þ jnR1xj þ jnR2xj
(15)

where Eps is the convergence tolerance and 0.0001 is set in this study, n means the current iteration and
n�1 means the last iteration.
(5)
 If Eps40.0001, find R1, R2, R1x and R2x using the displacements of this iteration, and go to Step (2).
In the Newmark analysis, a very small time step length of 1E–6s was used to improve the numerical
convergence. The above scheme coupled with Fryba’s theoretical vehicle solution and the bridge finite element
solution, which are different from the traditional finite element solution of Section 4. Thus, this method will be
used to validate the accuracy of the proposed finite element method. It is noted that this semi-theoretical
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method is only suitable to a two-axle vehicle moving on two-dimensional bridges. However, the proposed
finite element method of Section 4 can be deal with a series of complicated vehicles moving on three-
dimensional bridges.

3. Assumptions and equations of braking and acceleration

For the braking or acceleration of a vehicle, there are extra-applied forces in the system, such as friction
forces between road and wheels and acceleration or deceleration forces generated by the engine. Generally, it
is difficult to locate the position of those applied force precisely. In this study, we assume that the averaged
vehicle acceleration (a0) at current time is known, which is reasonable since people usually control the vehicle
by setting an appropriate acceleration or deceleration. Thus, the inertia force of each mass in the vehicle can be
generated. At each mass location, the position, velocity and acceleration in the x direction are

ui ¼ ūi þ v0tþ

ZZ
a0dtdt, (16)

_ui ¼ _̄ui þ v0 þ

Z
a0dt, (17)

€ui ¼ €̄ui þ a0, (18)

where ui, _ui and €ui (i ¼ 1, 3) are absolute displacements, velocities and accelerations of masses 1, 2 and 3,
ūi; _̄ui and €̄ui (i ¼ 1, 3) are relative displacements, velocities and accelerations of masses 1, 2 and 3, v0 is the
initial velocity and a0 is the current acceleration.

Substitute Eqs. (16)–(18) into Eq. (14) to obtain the following equation:

½M�

€f

€v3

€v1

€v2
€̄u3

€̄u1

€̄u2

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

þ ½C�

_f

_v3

_v1

_v2
_̄u3

_̄u1

_̄u2

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

½K �

f

v3

v1

v2

ū3

ū1

ū2

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼ fP̄F g, (19)

where

fP̄F g ¼ fPF g þ

0

0

0

0

�m3a0

�m1a0

�m2a0

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

. (20)

The above equation can solve the vehicle dynamic response due to the vehicle acceleration. To solve the
bridge dynamic response, the contact forces at wheels 1 and 2 in the x direction need to be modified as follows:

R̄1x ¼ R1x �m1a0 �m3a0
D2

D
, (21)

R̄2x ¼ R2x �m2a0 �m3a0
D1

D
. (22)
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Replacing R1x and R2x by R̄1x and R̄2x for the friction forces on the bridge structure, one can solve the
bridge dynamic response due to the vehicle acceleration.

4. Finite element solution

Moving vehicles contain car bodies, bogies, wheel-axis sets, springs and dampers, which are modeled as the
combination of moving wheel elements, spring–damper elements, lumped mass and rigid links. The vehicle is
assumed to move in the X direction (road direction), the vertical direction is in the Z direction and the Y

direction is perpendicular to the road. If vehicles move in other directions, a transformation should be used.

4.1. Moving wheel element

The moving wheel element contains a stiffness kr to model the elastic layer between the road and wheel as
shown in Fig. 2. The direction of this element can be in the global X, Y or Z direction. The element includes a
wheel node and a number of target nodes. The current wheel position is known, so the two target nodes where
the wheel node is located between them can be found. If the two target nodes and the wheel node are nodes 1,3
and 2 respectively, the stiffness of this 3-node element for the nodal displacements (X1, y1, X2, X3, y3) is

½S� ¼ ½T �T
kr �kr

�kr kr

" #
½T � (23)

in which X1, y1, X3 and y3 are the translations and rotations at target nodes 1 and 3, X2 is the translation of the
wheel node and

½T � ¼
½T1�

½T2�

" #
, (24)

where ½T1� ¼ 0 0 1 0 0
� �

, ½T2� ¼ ½N1 N2 0 N3 N4 �, N1 ¼ 1� ð3X 2
2=L2Þ þ ð2X 3

2=L3Þ, N2 ¼

�X 2½1� ð2X 2=LÞ þ ðX 2
2=L2Þ�, N3 ¼ ð3X 2

2=L2Þ � ð2X 3
2=L3Þ and N4 ¼ ðX

3
2=L2Þ � ðX 2

2=LÞ. (Ni ¼ the cubic
Hermitian interpolation functions).

The load F including all the trainload on the wheel is equilibrium on the system, so this load F on node 2
should be transformed into nodes 1 and 3 to obtain the force vector {f} as follows:

f f g ¼ ½T2�
TF . (25)

The above wheel element can be used with beam elements. If wheel elements contain damper or mass, the
unsymmetrical stiffness matrix must be used. The reason is because the velocity field of node 2 requires the
derivation of shape functions. To overcome this problem, we used the stiffness without damping and mass to
model the road elastic layer. Then, the spring–damping and lumped mass elements discussed in next section
can be connected to this element directly, because the responses at node 2 are explicit and the derivation of
shape functions is unnecessary. To evaluate the irregularity between the road and wheel, the element forces of
Eq. (25) are required to add into the global force vector { fr}.

f f rg ¼ ½T2�
TkrrðX Þ, (26)

where r(X) is a function of the road or rail irregularity and X is the wheel location in the moving wheel
direction (X axes).

The moving wheel element contains a stiffness kr without damping to model the elastic layer between the
road and wheel, so the stiffness matrix can be symmetric. This scheme is similar to the penalty method where a
1

2

3

X1 X3

krθ1 θ3

Fig. 2. Moving wheel element.
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constant should be defined. Since the current method is linear elastic without iteration procedures, kr will not
cause the problem of solution instability.

4.2. Spring– damper and lumped mass elements

The spring–damper element contains stiffness kv and damping cv as shown in Fig. 3. The direction of this
element can be in the X, Y or Z direction. The stiffness and damping matrices of this element are

½S� ¼
s �s

�s s

� �
. (27)

For the damping matrix s ¼ cv and for stiffness matrix s ¼ kv. [S] is the damping or stiffness matrix that can
be directly added to the global stiffness or damping matrix.

The lumped mass matrix is a diagonal matrix as follows:

½S� ¼ ½ \ m m m Ix Iy Iz \ �, (28)

where m is the mass, Ix, Iy and Iz are the moment of inertia in three global directions.

4.3. Rigid link effect

Rigid links connect the above finite elements with rigid bodies. For small deformation in a rigid body, if the
force FS

i is known in the global i direction (i ¼ X, Y or Z) at a slave node, the force and moments at the mass
center, called master node, can be calculated as follows:

FM
i ¼ FS

i , (29)

MM
Y

MM
Z

( )
¼
�DZ

DY

� �
FS

X ;
MM

X

MM
Z

( )
¼

DZ

�DX

� �
F S

Y and
MM

X

MM
Y

( )
¼
�DY

DX

� �
F S

Z or fMMg ¼ ½D�F S
i , (30)

where ðDX ;DY ;DZÞis the coordinate difference between the master and slave nodes, MM
X ; MM

Y and MM
Z are

the moments at the master node in the global X, Y and Z direction, respectively.

For a n-degree-of-freedom mass, damping or stiffness matrix ([SS]) and the force vector ({FS}) with a slave

degree of freedom (assume at kth degree of freedom), [SM] and {FM} at the master node are

½SM � ¼
½I �

½0�1 ½D� ½0�2

" #
½SS�

½I �

½0�1 ½D� ½0�2

" #T
or ½SM � ¼ T½ �½SS� T½ �T , (31)

fF Mg ¼ ½T �fF Sg, (32)
kV cV

node 2

node1

Fig. 3. Spring–damper element.
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where [I] is the n� n unit matrix, [0]1 and [0]2 are zero matrices and [D] is obtained from Eq. (30). After the
transformation, the kth degree of freedom of [SM] is the translation degree of freedom at the master node, and
two extra-degrees of freedom {MM} in Eq. (30) are contained at the last two degrees of freedom of the new
matrix [SM]. Usually, an element contains parts of slave and parts of normal degrees of freedom. We can use
Eq. (31) to do the transformation for each slave degree of freedom successfully.
4.4. Braking and acceleration

The assumptions are the same as those of Section 3, all the displacements, velocities and accelerations at
vehicles in the motion (X) direction are relative to current averaged displacement, velocity and acceleration
(similar in Eqs. (16)–(18)). For vehicles, the stiffness and damping forces are null for the averaged vehicle
displacement and velocity, so the unknown terms change to the relative displacement and velocity. The mass
forces due to the averaged vehicle acceleration in the motion direction can be calculated explicitly as inertia
forces (masses multiplying averaged vehicle acceleration). Thus, all the mass locations at vehicles are subjected
to inertia forces in the negative acceleration direction. After the above procedure, wheel element stiffness
matrices are added to the finite element model. Since there are wheel elements connecting vehicles and bridges,
the contact forces between them will be calculated automatically, so the applied forces (Eqs. (21) and (22))
subjected to bridges are not required. The above procedures produce a linear small-displacement finite element
analysis for the vehicle–bridge dynamic problem. The advantage of this model is that the formulation is
simple. The disadvantage is that the mass, damping and stiffness matrices vary with wheel position, which
needs to be solved at each time step. This condition is not serious, since for a problem with large degrees of
freedom the efficient conjugate gradient method [14] is often used to solve the matrix equation. At this time,
solving a new matrix equation at each time step is necessary. This moving vehicle dynamic analysis with large
degrees of freedom can be found in our previous investigations [15–17].
5. Validations

This section uses the semi-theoretical solution of Section 3 to validate the finite element method of Section 4.
The vehicle as shown in Fig. 1 is a rigid body containing two spring–dampers. The parameters of this vehicle
are D ¼ 14m, D1 ¼ D2 ¼ 7m, Hc ¼ 2m, m1 ¼ m2 ¼ 1e3 kg, m3 ¼ 18e3 kg, I ¼ 1e5 kgm2, c1 ¼ c2 ¼ c1x

¼ c2x ¼ 2e4 kg s, k1 ¼ k2 ¼ k1x ¼ k2x ¼ 8e6N/m, K1 ¼ K2 ¼ 3.85e10N/m (Ki is the spring constant of ties).
For the initial condition, the first wheel just begins to enter the bridge. The bridge material properties are
Young’s modulus of 2e11N/m2, mass per unit length of 4e3 kg/m, section area of 0.2m2, moment of inertia of
0.03m4 and damping ratio of zero. The Newmark method was used to solve the two schemes with the
Newmark constants of 0.5 and 0.25. The time step length is 1e–6s for the semi-theoretical scheme of Section 3
and 1e–3s for the finite element method of Section 4.

In the finite element scheme, the vehicle is modeled by two wheel elements, two spring–damper elements and
three lumped masses (wheel 1, wheel 2 and the rigid body). The master node is located at the center of the
lumped mass, and the upper nodes of the two spring–damper elements are slave nodes controlled by this
master node. The next two sub-sections compare the semi-theoretical and finite element solutions due to the
change of the bridge structure, vehicle speed and acceleration.
5.1. One-bay bridge with two piers under rigid connections

In Fig. 4, the two-axle vehicle moves on a one-bay bridge with two piers, in which the bridge length is 40m
and the pier height is 10m. The connections between the bridge and piers are rigid. The mesh of the bridge
contains 20 equal-space elements for the semi-theoretical scheme of Section 3 and six equal-space elements for
the finite element scheme of Section 4. Each pier contains four elements for both schemes. The vehicle initial
velocity, final velocity and acceleration are 30, 40 and 5m/s2 for case 1 and 30, 40 and 2m/s2 for case 2. Fig. 5
shows the comparison of the displacements on beam and mass centers using the two schemes. In this
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Pier Height =10 m

Fig. 4. The two-axle vehicle moves on a one-bay bridge with two piers.

S.-H. Ju, H.-T. Lin / Journal of Sound and Vibration 303 (2007) 46–5754
figure, solid and dashed lines are duplicate, which indicates that the results of the two schemes are almost
identical.

5.2. Three-bay continuous bridge with four piers under rigid connections

In Fig. 6, the two-axle vehicle moves on a three-bay bridge with four piers, in which the bridge bay length is
40m and the pier height is 15m. The connections between the bridge and piers are rigid. The mesh of the
bridge contains 60 equal-space elements for the semi-theoretical scheme of Section 3 and 18 equal-space
elements for the finite element scheme of Section 4. Each pier contains four elements for both schemes. The
vehicle initial velocity, final velocity and acceleration are 30, 45 and 5m/s2 for case 1, 30, 45 and 2m/s2 for
case 2 and 40, 30 and �5m/s2 for case 3. Fig. 7 shows the comparison of the displacements on beam and mass
centers using the two schemes. Similar to Example 1, this figure indicates that the comparison is almost
identical.

The above two examples indicate that the bridge vertical response is not so sensitive as the bridge
longitudinal response due to vehicle braking or acceleration, and this condition will be more serious when the
bridge contains high piers. The resonance may be invoked due to a series of vehicles, such as moving trains.
Thus, It will produce considerable errors if one only considers steady-static results for vehicle braking and
acceleration.

6. Conclusions

This paper developed a finite element scheme to calculate vehicle–bridge dynamic responses due to vehicle
braking and acceleration. First, the semi-theoretical solution of a two-axle vehicle moving on a bridge was
generated with the acceleration effect, and this scheme was used to validate the proposed finite element model.
In the semi-theoretical scheme, springs and dampers in the motion direction were added into Fryba’s solution
so that the braking and acceleration could be included. Since the bridge was solved using the traditional finite
element method, this semi-theoretical scheme can work out the two-axle–vehicle–bridge dynamic problem
with various bridge shapes.

In the vehicle acceleration problem, we assume that the averaged vehicle acceleration at current
time is known; so absolute vehicle displacements can be changed to relative vehicle displacements. Thus,
the inertia force at the center of each vehicle mass can be generated. This scheme used into a traditional
finite element method produces a linear and small displacement analysis. Numerical comparisons
indicate that the results of the semi-theoretical and finite element analyses are almost identical.
The most advantage of the proposed finite element model is that the theory and formulations are
very simple with symmetric stiffness and damping matrices, so it can be added to a standard dynamic
finite element codes easily. Moreover, very complicated vehicle models can be assembled using the
proposed elements as simple as the traditional linear-elastic and small-deformation finite element
method.

The numerical examples of this paper indicate that the bridge longitudinal response is more sensitive
than the bridge vertical response when the vehicle braking or acceleration is active, especially for higher piers.
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The resonance may be invoked due to a series of vehicles, so only using steady-static results for vehicle braking
or acceleration may produce large errors. The proposed finite element method can give a simple and accurate
approach to calculate the effect of vehicle braking and acceleration.
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Fig. 5. Displacements at beam and mass centers for example 1. (The dashed and solid lines are overlapped, which indicates that the two

solutions are almost identical.)
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Fig. 7. Displacements at beam and mass centers for example 2. (The dashed and solid lines are overlapped, which indicates that the two

solutions are almost identical.)

Pier Height=15 m
Total Bridge Length=120 m

Fig. 6. The two-axle vehicle moves on a three-bay bridge with four piers.
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